

Marco Pessotto (melmothX)

AmuseWiki: a library oriented wiki engine (talk)

September 3, 2015, Granada

How does it look like?

[image: s-s-screenshot.png]

Scenario

	

Digital library with more than 2000 texts, including full-length books

	

Long term archiving (not fire and forget texts), control revision

	

Quality output required (read: LaTeX output)

	

Imposing of PDF for home-printing

	

EPUB output for mobile devices

	

Preference for a flat file storage (like ikiwiki or MoinMoin)

	

Creation of collections (like on mediawiki)

	

One-man project

The lightweight markup

	

No standard, even if Markdown seems to be the winner (but with dialects)

	

Emacs Muse: project kind of dead, but the markup is compact and
expressive, documented, and has a reference implementation.
https://www.gnu.org/software/emacs-muse/

	

Some incompatibilities have been introduced, but they are
documented (to address corner cases where the syntax can be
confusing).

	

Bottom line: all these markups are easy to use and it takes 5
minutes to learn one of them, as long as it is documented.

Our own dialect of Emacs Muse

	

Manual: http://www.amusewiki.org/library/manual

	

Module: Text::Amuse (produces LaTeX and HTML)

	

Ill-suited for technical papers, though. No math support, no syntax
highlight, but well-suited for general prose and even poetry.

	

It has every feature one could expect from a lightweight markup:
images, sectioning, footnotes, simple tables, bold, italics,
subscript, superscript, lists, verbatim, quotations.

	

So far proved itself good and expressive.

Importing

	

Legacy library had the texts in filtered HTML

	

People usually have the texts in Word format or copy and paste from
HTML pages

	

The javascript HTML editor CKEditor has a “paste from Word” feature
http://ckeditor.com/

	

Need to convert the HTML to Muse, preserving as much as possible
the logical structure of the document (and discarding the noise).

	

Need some common search-and-replace patterns (like typographical
quotes, text cleaning).

	

Text::Amuse::Preprocessor

Compiling

	

Templating for output: Template::Tiny

	

PDF generation: XeTeX or LuaTeX (Unicode aware, system fonts)

	

EBook::EPUB::Lite (this is a port of EBook::EPUB withou XS
dependencies) using Text::Amuse’s splat HTML output

	

PDF::Imposition (written for this project but it’s a general
purpose module): put logical pages into a physical page according
to a schema (for booklets and home printing)

	

All the above glued together by Text::Amuse::Compile

	

muse-compile.pl script is shipped with Text::Amuse::Compile, so you
can generate the formats from the command line.

Data storage

	

Texts themselves are self-contained. All the information describing
the text (like author, title, categories) is stored in the header
of the text. 1 text (even a whole book), 1 file.

	

Texts are stored in a Git archive

	

Git integration on the site with cgit:
http://www.amusewiki.org/git/amw/

	

Full text search: Xapian (light, fast, fairly simple to setup, well
integrated in Perl with Search::Xapian).

	

Database integration: DBIx::Class

Web backend

	

A daemon takes care of all the operations which are slow or somehow
delicate where concurrent access could be a problem (text
compilation, publication, indexing, Git interaction).

	

Formats are pregenerated, including the HTML. The frontend just
serves them.

	

The backend and the frontend communicate via a job queue in the
database.

	

Some message queue systems were examined, but resorted to use the
database because it was the most straightforward and other
solutions looked like over-engineering.

Web Frontend

	

Catalyst application: chaining, method-to-uri mapping, actively
developed, great community, back-compatibility approach.

	

Plack-able application (currently deployed via nginx + FCGI)

	

Template: Template Toolkit

	

Localization via Catalyst::Plugin::I18N (plus local overriding
via local JSON file).

	

Localized for English, Italian, Croatian, Macedonian, Russian,
Finnish, Swedish, German, Spanish.

	

Multisite: on one instance you can run as many sites as you want
(this was the most compelling argument to write AmuseWiki).

User management

	

Kept at minimum reusing existing solutions.

	

Catalyst::Plugin::Authentication

	

Catalyst::Plugin::Authorization::Roles

	

DBIx::Class::PassphraseColumn

	

No hierarchical structure: each librarian can create other peer
librarians (plus root for site management) with the same level of
privileges.

	

Modes:

	

private site

	

blog site (only logged-in can edit)

	

moderated wiki (approval required)

	

open wiki (undertested)

The Bookbuilder

The basic idea is like the Wikimedia’s book creator, but with goodies.
Features:

	

LaTeX output

	

Font selection

	

Paper size selection

	

Imposition schema selection

	

Cover images upload

	

Custom files are compiled by the backend, even if the users sees
the live logs and the process is pretty fast.

	

EPUB output if required, with embedded fonts.

	

A basic question to keep robots away (probably will not scale, but
so far works well)

Some time left?

If we have some more time and no questions...

The past

	

Drupal + filtered HTML, texts kept in sync on a local Git repo with
scripts. Obviously it wasn’t a brilliant idea, to be generous.

	

Same filtered HTML inherited from Drupal, plus home-brewed CGI
scripts. It kind of worked.

	

Dancer application and Emacs Muse markup, no database. Worked, but
didn’t scale with multisite.

The future

	

Slides (upcoming release)

	

A better installer

	

Teasers

	

Decorative images

 OPS/s-s-screenshot.png
¢ -+-2- 0% Search

: The wiiter's guide

Authors: John Wiegley, Marco Pessotto, Michael Olson
Date: 2012

Topics: Documentation, How-To

Bl Eroend @ o+

imposed imposed _pUB HTML

The Text::Amuse markup manual

The writer’'s guide

The Muse markup

Paragraphs

Gentered and right aligned paragraphs and quotations
Sourcs

Literal paragraphs
Line breaks.

