
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

AmuseWiki: a library oriented wiki engine
(talk)

Marco Pessotto (melmothX)

September 3, 2015, Granada



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

How does it look like?



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Scenario

Digital library with more than 2000 texts, including
full-length books
Long term archiving (not fire and forget texts), control
revision
Quality output required (read: LaTeX output)
Imposing of PDF for home-printing
EPUB output for mobile devices
Preference for a flat file storage (like ikiwiki or MoinMoin)
Creation of collections (like on mediawiki)
One-man project



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The lightweight markup

No standard, even if Markdown seems to be the winner
(but with dialects)
Emacs Muse: project kind of dead, but the markup is
compact and expressive, documented, and has a reference
implementation.
https://www.gnu.org/software/emacs-muse/
Some incompatibilities have been introduced, but they are
documented (to address corner cases where the syntax can
be confusing).
Bottom line: all these markups are easy to use and it takes
5 minutes to learn one of them, as long as it is
documented.

https://www.gnu.org/software/emacs-muse/


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Our own dialect of Emacs Muse

Manual:
http://www.amusewiki.org/library/manual
Module: Text::Amuse (produces LaTeX and HTML)
Ill-suited for technical papers, though. No math support,
no syntax highlight, but well-suited for general prose and
even poetry.
It has every feature one could expect from a lightweight
markup: images, sectioning, footnotes, simple tables, bold,
italics, subscript, superscript, lists, verbatim, quotations.
So far proved itself good and expressive.

http://www.amusewiki.org/library/manual
https://metacpan.org/pod/Text::Amuse


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Importing

Legacy library had the texts in filtered HTML
People usually have the texts in Word format or copy and
paste from HTML pages
The javascript HTML editor CKEditor has a “paste from
Word” feature http://ckeditor.com/
Need to convert the HTML to Muse, preserving as much
as possible the logical structure of the document (and
discarding the noise).
Need some common search-and-replace patterns (like
typographical quotes, text cleaning).
Text::Amuse::Preprocessor

http://ckeditor.com/
https://metacpan.org/pod/Text::Amuse::Preprocessor


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compiling

Templating for output: Template::Tiny
PDF generation: XeTeX or LuaTeX (Unicode aware,
system fonts)
EBook::EPUB::Lite (this is a port of EBook::EPUB
withou XS dependencies) using Text::Amuse’s splat
HTML output
PDF::Imposition (written for this project but it’s a
general purpose module): put logical pages into a physical
page according to a schema (for booklets and home
printing)
All the above glued together by Text::Amuse::Compile
muse-compile.pl script is shipped with
Text::Amuse::Compile, so you can generate the
formats from the command line.

https://metacpan.org/pod/Template::Tiny
https://metacpan.org/pod/EBook::EPUB::Lite
https://metacpan.org/pod/EBook::EPUB
https://metacpan.org/pod/PDF::Imposition
https://metacpan.org/pod/Text::Amuse::Compile


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Data storage

Texts themselves are self-contained. All the information
describing the text (like author, title, categories) is stored
in the header of the text. 1 text (even a whole book), 1
file.
Texts are stored in a Git archive
Git integration on the site with cgit:
http://www.amusewiki.org/git/amw/
Full text search: Xapian (light, fast, fairly simple to setup,
well integrated in Perl with Search::Xapian).
Database integration: DBIx::Class

http://www.amusewiki.org/git/amw/
https://metacpan.org/pod/Search::Xapian
https://metacpan.org/pod/DBIx::Class


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Web backend

A daemon takes care of all the operations which are slow
or somehow delicate where concurrent access could be a
problem (text compilation, publication, indexing, Git
interaction).
Formats are pregenerated, including the HTML. The
frontend just serves them.
The backend and the frontend communicate via a job
queue in the database.
Some message queue systems were examined, but resorted
to use the database because it was the most
straightforward and other solutions looked like
over-engineering.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Web Frontend

Catalyst application: chaining, method-to-uri mapping,
actively developed, great community, back-compatibility
approach.
Plack-able application (currently deployed via nginx +
FCGI)
Template: Template Toolkit
Localization via Catalyst::Plugin::I18N (plus local
overriding via local JSON file).
Localized for English, Italian, Croatian, Macedonian,
Russian, Finnish, Swedish, German, Spanish.
Multisite: on one instance you can run as many sites as
you want (this was the most compelling argument to write
AmuseWiki).

https://metacpan.org/pod/Template
https://metacpan.org/pod/Catalyst::Plugin::I18N


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

User management

Kept at minimum reusing existing solutions.
Catalyst::Plugin::Authentication
Catalyst::Plugin::Authorization::Roles
DBIx::Class::PassphraseColumn

No hierarchical structure: each librarian can create other
peer librarians (plus root for site management) with the
same level of privileges.
Modes:

private site
blog site (only logged-in can edit)
moderated wiki (approval required)
open wiki (undertested)

https://metacpan.org/pod/Catalyst::Plugin::Authentication
https://metacpan.org/pod/Catalyst::Plugin::Authorization::Roles
https://metacpan.org/pod/DBIx::Class::PassphraseColumn


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Bookbuilder

The basic idea is like the Wikimedia’s book creator, but with
goodies. Features:

LaTeX output
Font selection
Paper size selection
Imposition schema selection
Cover images upload
Custom files are compiled by the backend, even if the users
sees the live logs and the process is pretty fast.
EPUB output if required, with embedded fonts.
A basic question to keep robots away (probably will not
scale, but so far works well)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some time left?

If we have some more time and no questions…



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The past

Drupal + filtered HTML, texts kept in sync on a local Git
repo with scripts. Obviously it wasn’t a brilliant idea, to be
generous.
Same filtered HTML inherited from Drupal, plus
home-brewed CGI scripts. It kind of worked.
Dancer application and Emacs Muse markup, no database.
Worked, but didn’t scale with multisite.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The future

Slides (upcoming release)
A better installer
Teasers
Decorative images


	How does it look like?
	Scenario
	The lightweight markup
	Our own dialect of Emacs Muse
	Importing
	Compiling
	Data storage
	Web backend
	Web Frontend
	User management
	The Bookbuilder
	Some time left?
	The past
	The future

