
Marco Pessotto (melmothX)
AmuseWiki: a library oriented wiki engine (talk)

September 3, 2015, Granada

amusewiki.org

AmuseWiki: a library oriented
wiki engine (talk)

Marco Pessotto (melmothX)

September 3, 2015, Granada

The past
• Drupal + filtered HTML, texts kept in sync on a local Git repo with

scripts. Obviously it wasn’t a brilliant idea, to be generous.

• Same filtered HTML inherited from Drupal, plus home-brewed CGI
scripts. It kind of worked.

• Dancer application and Emacs Muse markup, no database. Worked,
but didn’t scale with multisite.

The future
• Slides (upcoming release)

• A better installer

• Teasers

• Decorative images

10

Contents
How does it look like? . 5
Scenario . 5
The lightweight markup . 6
Our own dialect of Emacs Muse . 6
Importing . 6
Compiling . 7
Data storage . 7
Web backend . 8
Web Frontend . 8
User management . 8
The Bookbuilder . 9
Some time left? . 9
The past . 10
The future . 10

3

– DBIx::Class::PassphraseColumn

• No hierarchical structure: each librarian can create other peer librari-
ans (plus root for site management) with the same level of privileges.

• Modes:
– private site
– blog site (only logged-in can edit)
– moderated wiki (approval required)
– open wiki (undertested)

The Bookbuilder
The basic idea is like the Wikimedia’s book creator, but with goodies.

Features:

• LaTeX output

• Font selection

• Paper size selection

• Imposition schema selection

• Cover images upload

• Custom files are compiled by the backend, even if the users sees the
live logs and the process is pretty fast.

• EPUB output if required, with embedded fonts.

• A basic question to keep robots away (probably will not scale, but so
far works well)

Some time left?
If we have some more time and no questions…

9

Web backend
• Adaemon takes care of all the operationswhich are slowor somehow

delicate where concurrent access could be a problem (text compila-
tion, publication, indexing, Git interaction).

• Formats are pregenerated, including the HTML. The frontend just
serves them.

• The backend and the frontend communicate via a job queue in the
database.

• Somemessage queue systemswere examined, but resorted to use the
database because it was themost straightforward and other solutions
looked like over-engineering.

Web Frontend
• Catalyst application: chaining, method-to-uri mapping, actively de-

veloped, great community, back-compatibility approach.

• Plack-able application (currently deployed via nginx + FCGI)

• Template: Template Toolkit

• Localization via Catalyst::Plugin::I18N (plus local overriding
via local JSON file).

• Localized for English, Italian, Croatian, Macedonian, Russian,
Finnish, Swedish, German, Spanish.

• Multisite: on one instance you can run asmany sites as youwant (this
was the most compelling argument to write AmuseWiki).

User management
• Kept at minimum reusing existing solutions.

– Catalyst::Plugin::Authentication
– Catalyst::Plugin::Authorization::Roles

8

How does it look like?

Scenario
• Digital librarywithmore than 2000 texts, including full-length books

• Long term archiving (not fire and forget texts), control revision

• Quality output required (read: LaTeX output)

• Imposing of PDF for home-printing

• EPUB output for mobile devices

• Preference for a flat file storage (like ikiwiki or MoinMoin)

• Creation of collections (like on mediawiki)

• One-man project

5

The lightweight markup
• No standard, even if Markdown seems to be the winner (but with

dialects)

• Emacs Muse: project kind of dead, but the markup is compact
and expressive, documented, and has a reference implementation.
https://www.gnu.org/software/emacs-muse/

• Some incompatibilities have been introduced, but they are docu-
mented (to address corner cases where the syntax can be confusing).

• Bottom line: all these markups are easy to use and it takes 5 minutes
to learn one of them, as long as it is documented.

Our own dialect of Emacs Muse
• Manual: http://www.amusewiki.org/library/manual

• Module: Text::Amuse (produces LaTeX and HTML)

• Ill-suited for technical papers, though. No math support, no syntax
highlight, but well-suited for general prose and even poetry.

• It has every feature one could expect from a lightweight markup: im-
ages, sectioning, footnotes, simple tables, bold, italics, subscript, su-
perscript, lists, verbatim, quotations.

• So far proved itself good and expressive.

Importing
• Legacy library had the texts in filtered HTML

• People usually have the texts in Word format or copy and paste from
HTML pages

• The javascript HTML editor CKEditor has a “paste from Word” fea-
ture http://ckeditor.com/

6

• Need to convert the HTML to Muse, preserving as much as possible
the logical structure of the document (and discarding the noise).

• Need some common search-and-replace patterns (like typographical
quotes, text cleaning).

• Text::Amuse::Preprocessor

Compiling
• Templating for output: Template::Tiny

• PDF generation: XeTeX or LuaTeX (Unicode aware, system fonts)

• EBook::EPUB::Lite (this is a port of EBook::EPUBwithou XS de-
pendencies) using Text::Amuse’s splat HTML output

• PDF::Imposition (written for this project but it’s a general pur-
pose module): put logical pages into a physical page according to
a schema (for booklets and home printing)

• All the above glued together by Text::Amuse::Compile

• muse-compile.pl script is shippedwith Text::Amuse::Compile,
so you can generate the formats from the command line.

Data storage
• Texts themselves are self-contained. All the information describing

the text (like author, title, categories) is stored in the header of the
text. 1 text (even a whole book), 1 file.

• Texts are stored in a Git archive

• Git integration on the sitewithcgit:http://www.amusewiki.org/git/amw/

• Full text search: Xapian (light, fast, fairly simple to setup, well inte-
grated in Perl with Search::Xapian).

• Database integration: DBIx::Class

7

